Problem 2.25

For the configuration of Prob. 2.17, find the potential difference between a point on the axis and a point on the outer cylinder. Note that it is not necessary to commit yourself to a particular reference point, if you use Eq. 2.22.

Solution

An electrostatic field must satisfy $\nabla \times \mathbf{E}=\mathbf{0}$, which implies the existence of a potential function $-V$ that satisfies

$$
\mathbf{E}=\nabla(-V)=-\nabla V .
$$

The minus sign is arbitrary mathematically, but physically it indicates that a positive charge in an electric field moves from high-potential regions to low-potential regions (and vice-versa for a negative charge). To solve for V, integrate both sides along a path between two points in space with position vectors, \mathbf{x} and \mathbf{y}, and use the fundamental theorem for gradients.

$$
\begin{aligned}
\int_{\mathbf{x}}^{\mathbf{y}} \mathbf{E} \cdot d \mathbf{l}_{0} & =-\int_{\mathbf{x}}^{\mathbf{y}} \nabla V \cdot d \mathbf{l}_{0} \\
& =-[V(\mathbf{y})-V(\mathbf{x})] \\
& =V(\mathbf{x})-V(\mathbf{y})
\end{aligned}
$$

According to Problem 2.17, the electric field around the coaxial cable is

$$
\mathbf{E}=\left\{\begin{array}{ll}
\frac{\rho s}{2 \epsilon_{0}} \hat{\mathbf{s}} & \text { if } s<a \\
\frac{\rho a^{2}}{2 \epsilon_{0} s} \hat{\mathbf{s}} & \text { if } a<s<b \\
\mathbf{0} & \text { if } s>b
\end{array} .\right.
$$

Since the electric field is radially symmetric, the path taken from \mathbf{x} to \mathbf{y} is a radial one and parameterized by s_{0}, where $x \leq s_{0} \leq y$.

$$
\int_{x}^{y} \mathbf{E}\left(s_{0}\right) \cdot d \mathbf{s}_{0}=V(x)-V(y)
$$

Since we want the potential difference between a point on the axis and a point on the outer cylinder, set $x=0$ and $y=b$.

$$
\begin{aligned}
V(0)-V(b) & =\int_{0}^{b} \mathbf{E}\left(s_{0}\right) \cdot d \mathbf{s}_{0} \\
& =\int_{0}^{b}\left[E\left(s_{0}\right) \hat{\mathbf{s}}_{0}\right] \cdot\left(\hat{\mathbf{s}}_{0} d s_{0}\right) \\
& =\int_{0}^{b} E\left(s_{0}\right) d s_{0}
\end{aligned}
$$

$V(0)$ is the electric potential on the axis, and $V(b)$ is the electric potential on the outer cylinder.

Plug in the electric field, evaluate the integrals, and simplify the result.

$$
\begin{aligned}
V(0)-V(b) & =\int_{0}^{a} E\left(s_{0}\right) d s_{0}+\int_{a}^{b} E\left(s_{0}\right) d s_{0} \\
& =\int_{0}^{a} \frac{\rho s_{0}}{2 \epsilon_{0}} d s_{0}+\int_{a}^{b} \frac{\rho a^{2}}{2 \epsilon_{0} s_{0}} d s_{0} \\
& =\frac{\rho}{2 \epsilon_{0}}\left(\int_{0}^{a} s_{0} d s_{0}\right)+\frac{\rho a^{2}}{2 \epsilon_{0}}\left(\int_{a}^{b} \frac{d s_{0}}{s_{0}}\right) \\
& =\frac{\rho}{2 \epsilon_{0}}\left(\left.\frac{s_{0}^{2}}{2}\right|_{0} ^{a}\right)+\frac{\rho a^{2}}{2 \epsilon_{0}}\left(\left.\ln s_{0}\right|_{a} ^{b}\right) \\
& =\frac{\rho}{2 \epsilon_{0}}\left(\frac{a^{2}}{2}\right)+\frac{\rho a^{2}}{2 \epsilon_{0}}(\ln b-\ln a) \\
& =\frac{\rho a^{2}}{2 \epsilon_{0}}\left(\frac{1}{2}+\ln \frac{b}{a}\right)
\end{aligned}
$$

